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Selective excitation pulses are widely used in magnetic reso-
nance imaging in order to excite predetermined slices of the body
under examination. Such pulses are optimally designed by means
of the Shinnar–Le Roux algorithm. In this paper, we show that
under minimal assumptions, the complexity and computing cost of
the original Shinnar–Le Roux algorithm can be drastically re-
duced. We further propose an improved version of the algorithm,
involving only real quantities, which is both easier to implement
and faster to execute, so it is suitable for implementation at the
hardware level, in the context of a real-time fully digital magnetic
resonance transceiver. © 2000 Academic Press

Key Words: selective excitation; Shinnar–Le Roux algorithm;
radiofrequency pulses; radiofrequency system; hardware
implementation.

1. INTRODUCTION

Magnetic resonance imaging offers a three-dimensiona
aging modality. However, this is not always desirable, as
imaging has excessive requirements on experiment time,
ory, and computing cost. Thus, covering the area of intere
means of a series of two-dimensional slices that offer the
diagnostic information at a lesser cost has been tried.

Reducing the dimensions being imaged is usually don
exciting only a slice of finite width and not the whole bo
under examination. This is done using a combination
magnetic field gradient, called a selection gradient, a
specially designed radiofrequency pulse. Using a linea
proximation (1), the regions excited are those with Larm
frequencies corresponding to the spectral content of the p

The process of excitation, as described by the Bloch e
tions, is nonlinear, and the deviation from linearity, as we
the need for a more sophisticated approximation, bec
evident as the excitation angle increases. The latter is giv
the Shinnar–Le Roux (1, 2) algorithm, which predicts the e
itation angle with great precision.
The Shinnar–Le Roux algorithm deals with the one-dim

ional excitation problem in the general case. We inten
how that under minimal assumptions the computing time
omplexity can be drastically reduced.
Even though this may seem insignificant due to the e

rowing capacities of modern computers, it becomes sig
ant when considering an integrated system thought to h
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the calculation in real time. Indeed, real-time pulse gener
can be useful in adjusting large flip angles at scan time,
the case of nulling lipids using a fixed inversion time. CHE
pulses for water suppression are also a case that might c
real-time adjustment. It is also useful when designing m
band pulses if the exact slice locations are not know
advance. In general, real-time pulse generation is of val
cases of adaptive excitation, where it is needed to be ab
adjust the excitation during scan time in order to gain focu
the item of interest.

2. THE SHINNAR–LE ROUX ALGORITHM

The Shinnar–Le Roux algorithm is based on a nume
solution of the Bloch equations. Three assumptions are m
First, the pulse envelope is piecewise constant in time
periods ofDt. This corresponds to the way pulses are gene
in most commercial systems. Second, the effect of the r
frequency pulse is the same for all proton populations. T
the hard-pulse approximation: the rotation of the magnetiz
vector during theDt period is considered to be small enoug
be approximated as the outcome of two successive rota
one around the radiofrequency pulse’s axis and one aroun
axis of the superposition of the gradient and the static mag
field. When these conditions are met, the excitation proces
be approximated as the succession of the elementary rot
for eachDt.

Thus, the Shinnar–Le Roux algorithm treats the pulse
series of small hard pulses, each one exhibiting an indiv
amplitude and phase. The outcome of the algorithm is stor
an array and retrieved in order to produce, by means
complex I/Q modulation system, the desired radiofrequ
pulse.

However, the degrees of freedom offered by the Shinna
Roux algorithm have a cost: first, the requirement for sim
taneous amplitude and phase modulation, a capacity tha
lead to errors due to technical limitations, and second
computational cost due to the complex numbers used thro
out the algorithm.

Taking a closer look at the Shinnar–Le Roux algorithm
see that it describes the movement–rotation of the magn
tion by means of two FIR filters that represent its Cayley–K
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31IMPROVED SHINNAR–LE ROUX ALGORITHM
parameters (3). These are more adapted to describing quan
mechanical phenomena and also allow the easy synthe
successive rotations. They are given as a 23 2 complex matrix

Q 5 Sa 2b#

b a# D , with the additional constrainuau2 1 ubu2 5 1,

hus requiring only three independent quantities. Per
he most intuitive approach to the Cayley–Klein parame
s through their relationship to the axis–angle represent
f a rotation: If a rotation can be modeled as a rota
round an axisN 5 (nx, ny, nz) by an angleu, then the

matrix Q of the Cayley–Klein parameters is given
Q 5 cosu/ 2 I 2 i sin u/ 2 (nxs x 1 nys y 1 nzs z), where

sx 5 S0 1
1 0D , sy 5 S0 2i

i 0 D , andsz 5 S1 0
0 21D the

Pauli spin matrices andI the 23 2 unitary matrix. The mai
advantage of the Cayley–Klein parameters is, howe
that the matrix describing the synthesis of successive
tions can be calculated as the product of the matrice
eachDt.

Due to the hard-pulse approximation, the rotation for e
Dt period can be described as

Qj 5 SCj 2S# j

Sj Cj
DSz1/ 2 0

0 z21/ 2D
where

•Cj 5 cos
guB1, juDt

2

•Sj 5 ie i/B1, j sin
guB1, juDt

2
[1]

•z 5 eigGxDt.

By means of space–state recursion, the Cayley–Klein pa
eters are given as

Sa j

b j
D 5 z1/ 2SCj 2S# j

Sj Cj
DS1 0

0 z21DSa j21

b j21
D ,

nd, by definingAj 5 zj / 2a j andBj 5 zj / 2b j ,

SAj

Bj
D 5 SCj 2S# jz

21

Sj Cjz
21 DSAj21

Bj21
D .

The parametersA andB are polynomials ofz of gradej 2 1.
Their dependence onz expresses the spatial differentiation
the pulse effect due to the selection gradient.

Design using the Shinnar–Le Roux algorithm is based o
inversion of the above recursion formula, given by
m
of

ps
rs
n

n
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h
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e

SAj21

Bj21
D 5 S Cj S# j

2Sjz Cjz
DSAj

Bj
D 5 S CjAj 1 S# jBj

z~2SjAj 1 CjBj!
D . [2]

It can be proven that

Bj ,0

Aj ,0
5

Sj

Cj
5

ie iu jsin
f j

2

cos
f j

2

and that the characteristics of the radiofrequency waveform
be given as

● f j 5 2arctanUBj ,0

Aj ,0
U ,the total rotation angle during thej th

t period;

● u5/S2i
Bj ,0

Aj ,0
D , the phase of the radiofrequency pu

● B1, j 5
1

gDt
f je

iu j, the waveform of the radiofrequen

complex envelope.

3. DEGREES OF FREEDOM IN THE MODULATION
PROCESS: DISCARDING PHASE INFORMATION

The results of the Shinnar–Le Roux algorithm, as desc
above, have two degrees of freedom, corresponding to a
tude (uB1u) and phase (u) modulation. What will be proven
that if the excitation characteristics are symmetric around
point for which the gradient amplitude is zero, i.e., the poin
which the Larmor frequency equals the carrier frequenc
single degree of freedom suffices.

The term “excitation characteristics” refers to the form of
Cayley–Klein parameters as a function of the (spatial) sele
gradient axis. The Cayley–Klein parameters describe the e
of excitation independently from the initial condition; that is
say they describe the excitation process and not its result.
the symmetry refers to the rotation itself and not necessar
the magnetization distribution after the radiofrequency pu

In the designing process, the parametersA and B are de
signed as FIR filters whose frequency response approxim
the desired excitation characteristics. AfterB is designed, it i
multiplied by a complex factor so that its phase account
the orientation of the radiofrequency pulse’s axis on thexy

lane of the rotating frame.
Since the filtersA andB are by definition proportional to th
ayley–Klein parameters of the pulse, the effect of th
ymmetry constrains is that they are conjugate symmetric
(v) 5 2A(2v) and B(v) 5 2B(2v). In this case, it i

known from digital signal processing that FIR filters w
conjugate symmetric frequency response have real coeffi
(4), and thusAk( z) 5 ¥ j50

k21 ak, jz
2j andBk( z) 5 ¥ j50

k21 bk, jz
2j ,

whereak, j , bk, j [R. In order to account for the pulse orien-
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32 IKONOMIDOU AND SERGIADIS
tion factor in the rotating frame, we considerA andB polyno-
ials in the formAk( z) 5 m1 ¥ j50

k21 ak, jz
2j and Bk( z) 5 m2

¥ j50
k21 bk, jz

2j , wherem1, m2 [C with um1u 5 um2u 5 1.
Considering the above, the orientation angle of the radi

uency pulse’s axis is calculated as

uk 5 /S2i
m2bk,0

m1ak,0
D 5 u 1 /Sbk,0

ak,0
D .

However, sinceak,0 and bk,0 are real, the second te
can only calculate to 0° or 180°. Thus, its effect can
considered a change in the sign of the envelope and can
be coded as amplitude and not necessarily phase info
tion.

By substitution in Eq. [1], we get

Sk 5 ie i $/~2i ~m2/m1!!1/~bk,0/ak,0!%sin
fk

2
.

However,u2i(m2/m1)u 5 1, and thusei{/(2i(m2/m1))} 5 2i(m2/m1).
Furthermore, sinceak,0 andbk,0 are real,ei{/(bk,0/ak,0)} 5 sgn(bk,0/ak,0).
Thus,Sk 5 i(2i(m2/m1))sgn(bk,0/ak,0)sinfk/25 m2/m1 sk, wheresk

5 sgn(bk,0/ak,0)sin fk/2[R. If we go further and code the si
nformation into the amplitude representation by assigningfk 5

tan21 (bk,0/ak,0), thensk 5 sin fk/2. By definition,Ck[R. Ck

remains unaffected by the sign change infk, since the cosin
function exhibits even symmetry.

Substituting in the recursion formula of Eq. [2], we get

Ak21~ z! 5 Ckm1 O
j

ak, jz
2j 1

m2

m1
skm2 O

j

bk, jz
2j

5 m1SCk O
j

ak, jz
2j 1 sk

um2u 2

um1u 2 O
j

bk, jz
2jD

5 m1 O
j

ak21, jz
2j ak, j, ak21, j [ R

and

Bk21~ z! 5 zS2
m2

m1
skm1 O

j

ak, jz
2j 1 Ckm2 O

j

bk, jz
2jD

5 m2 O
j

bk21, jz
2j bk, j, bk21, j [ R.

Thus, having coded the sign information into the amplit
representation (anglef), the radiofrequency axis for the (k 2

)th step of the recursion calculates to
e-

e
us
a-

e

uk21 5 /S2i
Bk21,0

Ak21,0
z
ak,0

bk,0
D 5 /S2i

m2

m1
D 5 uk.

By means of induction we derive that the radiofreque
pulse’s axis remains constant throughout the recursio
should be noted, however, that due to the different definitio
the anglef the amplitude can change sign, and so it belon
R and should not be considered an element ofR1.

Given the above, the results of the design process are s
to be a constant angleu describing the orientation of th
radiofrequency pulse’s axis and a varying, thus selective
velope, described byB1(t).

The angleu describes the orientation of the radiofreque
pulse on thexy plane. However, it is known that the axesx and

of the rotating frame are set by the phase of the
adiofrequency pulse in every experiment. Furthermore,
maging sequences rely on pulses having a constant or
ion, by definition among thex axis, or at the most they u
uadrature angles, like in the Carr–Purcell–Meiboom–
pin-echo sequence (5). Thus, for the carrier generation
eed a sine generator and for special cases its cosine.
This carrier is used to modulate, by means of double-

and, suppressed carrier modulation, the functionB1(t). Spec-
trally, this can be derived from the fact that in the des
process we take both positive and negative frequencies
account. Thus, there is no issue of suppressing a side
Technically, this leads to a simplified radiofrequency gen
tion system.

4. THE SIMPLIFIED SHINNAR–LE ROUX ALGORITHM

A direct consequence of the constant radiofrequency pu
axis is the simplification of the Shinnar–Le Roux algorith
since we no longer need to calculateu at every recursion ste
What follows is a simplified version of the Shinnar–Le R
algorithm:

1. The inputs are given in the formAn( z) 5 ¥ j50
n21 ajz

2j and
Bn( z) 5 ¥ j50

n21 bjz
2j , whereaj , bj[R. A second, independe

input is the ratiom2/m1, which is needed in order to calcula
the axis angleu.

2. The anglef k 5 2 arctan (bk,0/ak,0) is calculated for ever
recursion step. This definition off k is different from the one i
the original Shinnar–Le Roux algorithm, in order to incor
rate the sign information, thus transferring inf k the only
freedom of change ofu. Following quantities are calculat
from f k:

● sk 5 sin
fk

2
;

● Ck 5 cos
fk

2
;

● B1,k 5
1

gDt
fk.
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33IMPROVED SHINNAR–LE ROUX ALGORITHM
This time, B1 corresponds to the pulse’s signed amplitu
Combined with the axis information coded in the angleu we
have the full description of the pulse.

3. Now, by using the equationsAk21( z) 5 m1(Ck ¥ j

ak, jz
2j 1 sk ¥ j bk, jz

2j) andBk21( z) 5 m2z(2sk ¥ j ak, jz
2j 1

Ck ¥ j bk, jz
2j) and ignoringm1 and m2, we can calculate th

polynomialsAk21( z) andBk21( z) to be used in the next recu-
sion step. Sinceak21,j depends onak, j and bk, j while bk21,j

depends onak, j11 andbk, j11, the calculation can be perform
in place: We first calculate and substituteak21,j and thenbk21,j ,
thus performing a memory-efficient procedure.

What should be noted is that all of the quantities involve
the recursion are real, thus reducing the requirements bo
memory and in computing cost and complexity. The mem
requirements for anN-point pulse are three real arrays
lengthN (two for the filters and one for the outcome) and f
accumulators fors, C, f, andu. Furthermore, the main part
the computational cost of the original Shinnar–Le Roux a
rithm is due to the repeatedu calculation as well as to th
complex multiplications, which are equivalent to four r
multiplications each. Thus our version is significantly fa
than the original.

Pulse design using the Shinnar–Le Roux algorithm
through three major steps. The first step involves designin
polynomial B, which may use any of the FIR filter desi
echniques that are widely used in digital signal proces
he time needed in this stage varies significantly accordin

he method selected. However, if we only want to adjus
ip angle, the form ofB can be calculated only once and

retrieved from memory to be adjusted by a multiplication
sin f/2, wheref is the total flip angle. The calculation of t
polynomialA takes place in the second step. This is usua
minimum-phase filter whose calculation involves complex
strum techniques and Fourier transform calculations. The
step involves the backrecursion discussed above.

In order to estimate the acceleration of the design pro
we compared the time needed for the backrecursion an
two final design stages using the original and our simpl
version of the Shinnar–Le Roux algorithm. Results are sh

TAB
Duration of the Design Process (in

Filter length
Simplified SLR
backrecursion

Simplified SLR
last two stages

Conventio
backrec

61 0.65 5.27 7
101 1.59 11.65 2
151 3.41 25.10 4
201 5.77 27.57 7
251 8.84 30.59 11
301 12.53 59.92 16
.
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in Table 1. Timings are given in milliseconds on a Pentiu
350-MHz-based computer. What we derive is that the
needed for the backrecursion is one order of magnitude
than in the original version, while the last two stages are tw
four times faster, depending on the relation between the
length and the size of the FFT used.

Furthermore, even though the results of the two algorit
are expected to be identical, the reduction of computin
expected to minimize round-off errors during the calcula
and therefore provide more accurate results.

5. CONCLUSIONS

It has been shown that, for excitation characteristics tha
symmetric around the beginning of the gradient axis, a s
degree of freedom suffices for the modulation of the radio
quency excitation pulse. This symmetry refers to the loca
of the zeros ofA andB and not to any phase offsets introdu
by manipulating the orientation of the radiofrequency pu
This single degree of freedom is due to the fact that the p
axis of the desired pulse remains constant. A constant p
factor can be introduced to account for the orientation of
axis on thexy plane of the rotating frame. However, as
orientation of thex andy axes is defined by the carrier ph
of the initial pulse and remains constant throughout the e
iment for most imaging methods, the absolute radiofrequ
phase should be of no importance as long as we keep a s
carrier source as a reference.

This result has a significant impact on the pulse gener
system. It is known that for a signal with arbitrarily vary
phase, errors in the generation of the modulated signal c
be avoided. What has been shown is that it suffices onc
phase of the carrier to adjust and treat the rest of the produ
as an amplitude modulation process. Given the usual ori
tion of the radiofrequency pulses in the rotating frame,
along thex or in special cases along they axis, the mos
required of the modulator is to produce the quadrature an
that is to say 0°, 90°, 180°, and 270°. These angles ca
achieved easily and with greater precision.

1
s/Pentium II 350-MHz Computer)

l SLR
ion

Conventional SLR
last two stages

Backrecursion
gain ratio

Last two stage
gain ratio

12.53 11.8 2.4
30.71 12.6 2.6
66.90 12.8 2.7

100.74 13.3 3.6
143.90 13.4 4.7

4 222.45 13.5 3.7
LE
m

na
urs

.69
0.05
3.83
6.79
8.81
9.9



stic
xc
th
ra
ou
as

mm

ou
va
re

r pu
t

34 IKONOMIDOU AND SERGIADIS
The assumption of symmetrical excitation characteri
holds for the vast majority of one-dimensional selective e
tation problems. In most cases a uniform distribution of
magnetization in the excited region is desired, which is p
tically equivalent to the symmetry conditions assumed in
algorithm. Even in the case of minimum- and maximum-ph
pulses, the design process is based on real and thus sy
rical polynomials.

Furthermore, a simplified version of the Shinnar–Le R
algorithm has been presented. In this version, by taking ad
tage of the constantu angle, all of the quantities involved a
eal, thus reducing the memory requirements, the com
ional cost, and the complexity of the original algorithm.
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